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ARTICLE INFO ABSTRACT
Keywords: Conventional membrane design for redox flow batteries (RFBs) faces persistent challenges in balancing the
Redox flow battery conductivity-selectivity-stability trilemma, particularly with perfluorinated benchmark materials suffering from
Membrane high cost, redox couple crossover, and environmental concerns. Recent advances demonstrate that microstruc-
Conductivity . . - . . . . .
Selectivit ture engineering and novel chemistries, including charged/uncharged nanochannels, size-exclusion architec-
Stability Y tures, and hybrid systems, enable breakthrough performance. However, comprehensive reviews linking these
Microstructure innovations to commercialization barriers remain limited. This review presents a novel synthesis of recent ad-

vances in RFB membrane design by structurally categorizing membranes into dense, porous, and charged
microporous types, and highlights innovative strategies that overcome the classic conductivity—selectivity—st-
ability trade-off. We first establish the fundamental ion transport mechanisms and performance trade-offs gov-
erning membrane efficiency; multifunctional chemistries and microstructural control of RFB membranes are also
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analyzed. Subsequently, we categorize membrane architectures into dense and porous configurations based on
structural features, and highlight recent innovations that overcome conductivity-selectivity compromises
through Donnan exclusion in charged dense membranes, size sieving in porous membranes, and the synergy
between the two in charged porous membranes. Finally, we discuss unresolved challenges in long-term stability,
scalability, performance validation, and integrated system design, providing a roadmap for future research
focused on operando characterization, bio-inspired multifunctional materials, and system-specific optimization.
This review establishes design principles for next-generation RFB membranes that simultaneously achieve high
efficiency, durability, and eco-compatibility in grid-scale energy storage.

1. Introduction

The global transition to renewable energy requires advanced grid-
scale storage solutions to address the intermittency of sources such as
solar and wind and to ensure grid stability [1,2]. Among various energy
storage technologies [3-7], redox flow batteries (RFBs), particularly
vanadium-based redox flow batteries (VRFBs), have emerged as prom-
ising candidates due to their ability to decouple power and energy rat-
ings, inherent safety derived from aqueous electrolytes, and scalability
[8,9]. As a critical component of RFBs, the membrane must simulta-
neously fulfill three competing requirements: i) high ion selectivity to
block crossover of redox-active species while facilitating charge-
balancing ion transport; ii) low ionic resistance to minimize energy
losses and maximize voltage efficiency; and iii) robust chemical and
mechanical stability to withstand harsh electrochemical environments
over long operational lifetimes. These demands give rise to a funda-
mental conductivity—selectivity—stability trilemma, These demands
give rise to a fundamental conductivity-selectivity—stability trilemma,
which constitutes a major constraint on the widespread deployment of
RFB technology [10-12].

Commercial perfluorosulfonic acid (PFSA) membranes exemplify
this fundamental trade-off. They exhibit exceptional proton conductiv-
ity, often exceeding 90 mS cm ™!, and demonstrate remarkable chemical
and mechanical durability under operating conditions. However, these
advantages are offset by several critical drawbacks: high vanadium ion
permeability (6.72 x 107® cm? min~!), which leads to significant ca-
pacity fade and efficiency loss; prohibitively high cost, contributing to
over 40 % of the total stack expense; and the environmental persistence
of perfluoroalkyl substances, raising concerns over ecological impact
and long-term sustainability [13,14]. Hydrocarbon-based membranes
represent cost-effective alternatives to PFSAs; however, their practical
application is limited by susceptibility to oxidative degradation, pri-
marily through cleavage of C—H bonds [15,16]. Moreover, inherent
material trade-offs further limit performance. For example, enhancing
conductivity typically necessitates the incorporation of hydrophilic do-
mains, which increases water uptake and causes swelling. This process
expands the membrane's transport pathways and accelerates vanadium
ion crossover. [17]. Similarly, reducing membrane thickness lowers
area-specific resistance but compromises mechanical strength and
further promotes crossover [18]. These limitations greatly hinder the
commercial viability of hydrocarbon membranes for long-duration flow
battery applications.

Recent advances in membrane design emphasize precise micro-
structural control and novel chemical approaches to address existing
challenges. In dense membranes, rigid sub-nanometer channels (less
than 2 nm) utilize nanoconfinement effects to improve size-selective
sieving and strengthen ion-pore interactions. This process facilitates
ultra-selective ion transport, frequently via continuous hydrogen-
bonding networks or Grotthuss-type proton conduction pathways
[19]. Moreover, porous membranes are created using techniques such as
phase inversion or sacrificial templating. These membranes are engi-
neered with well-defined nanopores (ranging from 1 to 5 nm) that
facilitate efficient size-exclusion sieving while keeping area-specific
resistance low [20,21]. Hybrid systems also play a crucial role by
incorporating functional nanofillers into polymer matrices, which helps

to tailor ionic pathways and improve selectivity in composite mem-
branes [22-24]. Additionally, layered architectures combine mechani-
cally robust porous supports with thin selective layers, effectively
decoupling the traditional trade-off between conductivity and selec-
tivity [25,26].

Despite these advances, comprehensive reviews linking these in-
novations to commercialization barriers are still limited [10,27]. This
review presents a novel synthesis of recent advances in RFB membrane
design by structurally categorizing membranes into dense, porous, and
charged microporous types, and highlights innovative strategies that
overcome the classic conductivity-selectivity-stability trilemma.
Fundamental ion transport mechanisms and performance trade-offs in
membranes are first established, and multifunctional chemistries and
microstructural control are also critically analyzed. Then, membrane
architectures are classified into dense and porous types according to
their structural characteristics, with emphasis on recent advances that
address conductivity-selectivity trade-offs via Donnan exclusion in
charged dense membranes, size-sieving in porous membranes, and
synergistic strategies in charged porous systems. Persisting challenges in
long-term stability, scalability, and performance validation are exam-
ined, concluding with a research roadmap emphasizing operando
characterization, bio-inspired multifunctional materials, and system-
specific optimization. This review, while centered on VRFB mem-
branes for illustrative depth, will highlight membrane strategies that are
applicable or have been successfully demonstrated across these and
other emerging RFB systems, such as aqueous organic RFBs [28-32] and
iron-chromium RFBs [33-36]. By integrating chemistry, microstructure,
and sustainability perspectives, this work bridges lab-scale innovations
with industrial deployment needs, ultimately enabling membranes that
simultaneously achieve low resistance, high selectivity, and long life-
span for grid-scale renewable energy storage.

2. Fundamentals of RFB membranes

RFBs store energy in electrolyte solutions containing dissolved
redox-active species, such as vanadium ions and organic molecules.
During battery operation, these electrolytes are pumped from external
tanks through electrochemical cells where oxidation and reduction re-
actions take place at the porous surface of electrodes (Fig. 1). The
membrane serves as a critical component by performing two essential
functions: it physically separates the catholyte and anolyte to prevent
cross-mixing of active species, while selectively facilitating the transport
of charge-balancing ions to maintain electroneutrality throughout
charge and discharge cycles. In conventional vanadium RFBs (VRFBs),
the reactions at two electrodes are as shown in Egs. 1 and 2 [10].

Charge
Positive electrode : VO** +H,0 = VO,"+2H" +e” [¢))
Discharge
. Charge
Negative electrode : V3* +e~ =2 V** 2
Discharge

Selective ion transport through membranes plays a key role in the
RFB operation [37]. Therefore, in this section, we will first summarize
the ion transport mechanisms in RFB membranes. Subsequently, various
performance metrics of RFB membranes will be discussed, focusing
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Fig. 1. Schematic diagram of the working principle of vanadium-based RFBs.

primarily on conductivity, selectivity, and stability. Next, membrane
composition, which is the intrinsic factor influencing these performance
metrics, is summarized, with a brief overview of the relationship be-
tween composition and electrochemical properties. Finally, primary
structural configurations of current RFB membranes, such as dense
membranes, porous membranes, and charged microporous membranes,
are outlined.

2.1. Ion transport mechanisms in RFB membranes

Membranes in RFBs enable critical functions in electrochemical
systems by facilitating selective ion transport while separating electrode
reactions. Their performance hinges on ion transport dynamics within
charged channels, governed by complex interactions between ions,
functional groups, and the membrane matrix. Traditional ion-exchange
membranes rely on microphase-separated nanostructures (typically >2
nm) formed by hydrophilic/hydrophobic domain segregation [38]. In
these systems, ion transport follows the Donnan-Manning model, where
counter-ion mobility depends on nanochannel tortuosity described by
the Mackie-Meares model and electrostatic effects modeled by Man-
ning's counter-ion condensation theory [39]. While effective for basic
cation/anion separation, these membranes face an intrinsic perme-
ability/selectivity trade-off: increasing ion exchange capacity to
enhance conductivity inevitably causes water uptake-induced swelling,
enlarging channels, and compromising selectivity among similarly
charged ions.

The emergence of new-generation membranes with rigid micropo-
rous channels (< 2 nm) fundamentally changes the ion transport
behavior. These membranes leverage confinement effects at sub-
nanometer scales to intensify size sieving and ion-channel in-
teractions. Key breakthroughs arise from three classifications of channel
dimensions. Sub-2-nm channels (1-2 nm) enable hydrated ion transport
while amplifying interactions with functionalized pore walls [40]. Sub-
1-nm channels (0.7-1 nm) force partial dehydration of ions, weakening
hydration shell shielding and significantly enhancing electrostatic in-
teractions [41]. Ultramicropores (< 0.7 nm) induce near-complete
dehydration, which exposes intrinsic ion properties and enables ultra-
selective transport through continuous hydrogen-bond networks or
Grotthuss mechanisms.

Ion flux (J;) in charged channels follows the Nernst-Planck equation,
coupled with the Poisson equation [42,43] to account for electric field-
concentration gradient, as presented in Egs. 3 and 4 [44].
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where J;, D;, ¢;, ¢4, ¢, Z;, and ® are the ion flux, diffusion coefficient, ion
concentration, cation concentration, anion concentration, ionic species'
valence, and chemical potential, respectively.V denotes the gradient
operator, and V? is the Laplace operator. F, R, T, e, and ¢ are the Faraday
constant, universal gas constant, Kelvin temperature, electron charge,
and dielectric constant, respectively.

The behavior of ion transport is dictated by the channel diameter (d)
relative to the Debye length (Ap) [45]. When d > 2\p, bulk-like ion
transport dominates with negligible selectivity. As the channel size de-
creases (d < 2\p), overlap of the electrical double layers occurs, pro-
moting counter-ion accumulation and enhancing selectivity. Further
confinement, where XA is less than 1 nm and d approaches hydrated ion
diameters, leads to dominance by confinement effects: partial dehy-
dration lowers the energy barrier for specific ions via tailored in-
teractions, such as electrostatic forces, hydrogen bonding, and
coordination.

2.2. Key performance parameters of RFB membranes

The performance of RFBs rely critically on the membrane's key pa-
rameters. High ionic conductivity minimizes energy loss by facilitating
efficient ion transport, and exceptional selectivity is vital to allow
desired ions to pass while blocking active species crossover, preventing
self-discharge and capacity fade. Simultaneously, the membrane must
possess robust mechanical stability to withstand operational stresses
such as pressure gradient without tearing, and outstanding chemical
stability to resist degradation from harsh electrolyte corrosion over
thousands of cycles. Optimizing these properties, including conductiv-
ity, selectivity, mechanical strength, and chemical resilience, is essential
for achieving efficient, durable, and cost-effective RFB operation [46].
Noteworthy that membrane requirements in RFBs are system-specific,
dictated by the redox couples. VRFBs demand blocking multivalent
vanadium cations in acidic, oxidizing environments [27]. Aqueous
organic RFBs require precise size-exclusion to hinder organic molecule
crossover across varying pH levels [47]. Iron-chromium RFBs need se-
lective Fe/Cr separation and stability in corrosive chloride electrolytes
[48]. Thus, while the conductivity-selectivity-stability trilemma is uni-
versal, optimal membrane design is chemistry-dependent.

2.2.1. Conductivity

Conductivity (o, S cm’l) dictates voltage efficiency and power
density. Ion conduction is based on the vehicle mechanism and the
Grotthuss mechanism [49]. The former involves hydrated ion diffusion
through hydrophilic domains. And the latter is derived from ion hopping
between protonation sites, such as —SO3H groups and N-heterocycles.

Ion transport in RFB membranes is governed by three interconnected
factors. Water uptake and hydrophilicity establish the foundation for ion
mobility by enabling solvation and hydration of charge carriers. Ion-
exchange capacity, particularly the density of functional groups like
-S03, directly enhances conductivity but simultaneously exacerbates
membrane swelling. Critically, the microstructure exemplified by well-
connected hydrophilic channels in phase-separated materials such as
PFSA determines the efficiency of ion conduction pathways. These fac-
tors exhibit an inherent trade-off: strategies that boost conductivity
often exacerbate swelling, which widens transport pathways and ac-
celerates detrimental vanadium crossover [50]. This compromise re-
mains a central challenge in membrane design. Additionally,
temperature significantly influences ion conductivity [16,51]. Elevated
temperatures typically enhance ion mobility and reduce electrolyte
viscosity, thereby increasing conductivity and improving voltage
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efficiency [52]. However, this benefit must be balanced against accel-
erated membrane degradation and increased crossover rates at higher
temperatures [53].

2.2.2. Selectivity & permeability

Selectivity can be determined by the ratio of conductivity to
permeability (6/P). It evaluates the membrane's ability to balance high
ion conduction with low active-species crossover. And permeability
quantifies undesired ion crossover. Three synergistic strategies can be
used to enhance membrane selectivity in RFBs. Size exclusion uti-
lizes precisely engineered nanopores in materials like polymers of
intrinsic microporosity (PIMs) or porous membranes to physically block
larger hydrated redox species while permitting smaller charge-balancing
ions to permeate [54]. Complementarily, Donnan exclusion leverages
fixed charged groups to electrostatically repel similarly charged active
species [55]. For instance, anion-exchange membranes with -NRY
groups effectively repel cationic vanadium ions. To overcome inherent
limitations of single-mechanism designs, hybrid approaches integrate
thin selective layers onto porous supports, combining size-sieving pre-
cision with Donnan repulsion to achieve hierarchical selectivity without
compromising conductivity [25].Besides, operational temperature crit-
ically influences membrane performance. Elevated temperatures typi-
cally increase water uptake, promoting higher ionic conductivity but
also inducing greater swelling [56]. This swelling can compromise me-
chanical stability and accelerate species crossover, creating a key trade-
off for membrane design and operational control. Therefore, tempera-
ture is a vital parameter in assessing membrane suitability for practical
RFB applications.

2.2.3. Stability

The operational lifespan of RFBs necessitates that membranes endure
harsh electrochemical environments, including exposure to strong acids
or bases, potent oxidizing agents, and sustained mechanical stress, for
extended periods exceeding 10 to 20 years [57]. Mechanical stability is a
primary requirement, demanding robust tensile strength to resist phys-
ical stresses encountered during cell assembly, stack compression, and
operational pressure fluctuations, thereby preventing catastrophic
membrane rupture. Concurrently, dimensional stability, characterized
by a low swelling ratio upon electrolyte uptake, is equally critical.
Minimizing swelling is essential to preserve the integrity of selective
transport pathways, as it reduces pore distortion and effectively curtails
the undesired permeation of active species, such as vanadium ions. To
simultaneously achieve high mechanical robustness and controlled
swelling, current research employs strategies such as chemical cross-
linking to fortify the polymer network, blending with dimensionally
stable components, and implementing reinforcement via layered archi-
tectures. These approaches collectively ensure structural integrity while
suppressing performance-degrading swelling [58].

Chemical stability is paramount for RFB membranes operating in
harsh electrochemical environments, particularly in vanadium systems
where highly oxidative VO3 species necessitate robust oxidation resis-
tance. Membrane degradation under extreme pH conditions proceeds
through distinct mechanisms: hydrocarbon-based polymers are suscep-
tible to oxidative cleavage of C—H and C—C bonds, while anion-
exchange membranes face nucleophilic attacks targeting vulnerable
functional groups, such as quaternary ammonium moieties. To mitigate
these failure pathways and enhance longevity, recent research has
focused on several material strategies. These include utilizing inherently
stable fluorinated backbones [59], oxidation-resistant aromatic poly-
mers [20], and protective additives such as radical scavengers that
quench reactive species before membrane damage occurs [60].

It is important to note that temperature acts as a critical accelerator
for these degradation mechanisms [30]. Higher operational tempera-
tures can dramatically increase the rate of oxidative attacks, hydrolysis
of functional groups, and polymer chain scission, thereby shortening the
membrane's lifespan. Consequently, the evaluation of membrane
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stability must account for temperature-dependent degradation, and
long-term durability tests should be conducted under relevant thermal
conditions to accurately predict performance over the battery's opera-
tional lifetime.

Furthermore, operational temperature emerges as a pivotal external
parameter that critically influences this balance. It directly modulates
ion transport, swelling behavior, and chemical degradation rates,
thereby making the optimization of membrane properties inherently
temperature-specific. A comprehensive understanding of these thermal
effects is indispensable for developing membranes capable of delivering
stable performance under real-world operating conditions.

Table 1 summarizes the impact of various parameters on RFB per-
formances, their key influencing factors, and optimization strategies.
Achieving simultaneous optimization of conductivity, selectivity, and
stability in RFB membranes remains fundamentally challenging due to
inherent material trade-offs. Enhanced ion conductivity requires hy-
drophilic domains that facilitate ion solvation and mobility, yet mem-
brane swelling in these regions enlarges transport pathways,
accelerating vanadium crossover and degrading selectivity. Stabili-
ty—cost conflicts arise with benchmark PFSA membranes like Nafion. On
the one hand, they offer exceptional chemical/mechanical robustness;
on the other hand, their high cost and environmental footprint limit
scalability [61]. In stark contrast, hydrocarbon alternatives reduce costs
but sacrifice long-term stability under harsh operating conditions [62].
Thinning membranes reduce ionic resistance but exacerbate fragility
and crossover susceptibility, forcing compromises between performance
efficiency and durability.

2.3. Composition of RFB membranes

RFB membranes primarily comprise three material categories: PFSA-
based polymers, functionalized aromatic hydrocarbon polymers, and
heterocyclic polybenzimidazole (PBI), as summarized in Table 2. PFSA
membranes, exemplified by commercial Nafion, dominate current ap-
plications due to their exceptional proton conductivity (>100 mS cm™!)
and robust mechanical/chemical stability in acidic environments.
However, their inherent limitations, including high vanadium ion
crossover from oversized hydrated channels, substantial material cost,
and environmental persistence, drive research toward non-fluorinated
alternatives [63].

Functionalized aromatic hydrocarbon polymers are promising can-
didates [64]. Aromatic polymers, including sulfonated poly(ether ether
ketone) (SPEEK) [57,65,66], sulfonated polysulfone (SPSF) [67], sul-
fonated poly(ether sulfone) (SPES) [61], and chloromethylated/

Table 1
Summary of various parameters' impact on RFB performances, their key influ-
encing factors, and optimization strategies.

Parameter Impact on Key Influencing Optimization
RFB Factors Strategies
1t t tak
VO. e Water UPLaxe, Hydrophilic grafts,
- efficiency, hydrophilicity, . .
Conductivity . acid-doping, phase-
power microstructure, j
. separated designs
density temperature
CE. capaci Pore size, charge Size exclusion,
Selectivity ? p v density, Donnan charged grafts, LbL
retention . N
potential, temperature coatings
Crosslinki
Self- Swelling ratio, ion size, T0SS 1 ning,
. . nanofillers,
Permeability discharge, membrane charge, .
. hydrophobic
capacity fade temperature
segments
Mechanical Cycle life, Tensi.le strer.lgth, ' Reinforcing la}.lers,
o . swelling ratio, crosslink  polymer blending,
Stability durability . L
density, temperature crosslinking
Backbone chemistry, Fluorination, stable
Chemical Long-term oxidation resistance, aromatics,
Stability operation hydrolytic stability, antioxidant
temperature additives
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Table 2
Molecular structure summary of various polymer membranes for RFBs.
Polymer Molecular structure Ref.
—<C‘F CF; 34 CF,~ CFy)—
DPESA 0-CFy~CF -0~ CF,-CF,-SOJH [85]
CF,
N
%
Original PBI +<>—©+ [86]
i /'
Acid-doped ‘MS—Q’F [56]
PBI o HSO, HSO, "n
PBI ;
N SR
4
MS-PBI Humr«; Q : [871
OgH
: : N: ‘ ‘ :N
PBI-OSO3—/ ’ ; O O N\H;
2 3™ HO.
OHN-+ [ Y s8]
=-$=-0' e ['4
] \
Original 1O OO OO O 189]
PEEK
404 >*O‘< )*C . -O- O‘( >~C4< >+
PEEK SPEEK t 6 : :fsosH 5 Y [89]
[} o
1|0-[—< ?—n—< >—E‘Mo—< >—(—< >']-I'
BSEEK _—_ O X O y [90]
CHy o
Original PSF _‘OOE;QO_Q_(@ C i [91]
r CHs f]’ 5
—O—< >—C O—< >—S—< >—
PSF SPSF L e,Q 4 i [92]
SOH
CH; — o]
—o—4 :%c:@o{ :F%%i -
CMPSF &\ 6 ' [91]
CH,CI
Original PES O § O ‘% [93]
PES O
SPES @‘4@*%‘ [94]
-q 0 505 H" Q 0
ol ¢ ‘,c%d
N = K W )0
Original SPI acgr‘bqo,p NI [95]
X Y
SPI
o o o & &
Branched SPI = ? i ° °n " " [96]
(s-£-SPT) §
HOS HO3S

quaternized derivatives (CMPSF/QAPSF) [68] offer cost-effective,
tunable platforms. These materials require deliberate functionaliza-
tion, such as sulfonation and quaternization, to introduce ion-exchange
groups such as —SO3 and — NR3 that enable proton transport. Un-
modified versions exhibit negligible conductivity, but post-modification
conductivity remains lower than PFSA. Critically, excessive functional-
ization degrades chemical stability in oxidizing electrolytes like VO3
solutions and exacerbates swelling, leading to mechanical fragility and
vanadium permeation [69]. Molecular design variations, such as
branched sulfonated polyimide (SPI) architectures, enhance entangle-
ment density, reducing vanadium diffusion and partially mitigating
stability issues.

PBI represents a distinct class of heterocyclic aromatic membranes
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with exceptional oxidative stability [57,70,71]. Its proton conductivity
relies on acid doping rather than intrinsic ion-exchange groups [72].
Immersion in sulfuric acid facilitates dual proton-transport pathways: 1)
protonation of imidazole nitrogen sites and 2) retention of free acid
within the polymer matrix. Conductivity correlates with acid doping
levels and membrane hydration [73]. Notably, molecular flexibility and
imidazole group density critically influence performance. For instance,
polymers like poly[4,4’-(diphenylether) — 5,5-bibenzimidazole] (OPBI)
[74], with flexible chains and low imidazole density, achieve higher
conductivity than rigid, highly functionalized analogues, such as poly
(2,5-benzimidazole) (ABPBI), by minimizing hydrogen-bond network
resistance [75]. Sulfonation of PBI further boosts conductivity but risks
compromising stability [76].

Other polymers, such as phosphinated polypentafluorostyrene [77],
polyvinylidene fluoride (PVDF) [78], polytetrafluoroethylene (PTFE)
[791, and polypropylene [80], have been explored for niche advantages.
Modifications like polymer blending, nanofiller integration, and cross-
linking aim to balance conductivity—selectivity trade-offs [81,82]. For
instance, PFSA modification via zwitterionic grafting leverages charge
repulsion to curb vanadium crossover [83]. Similarly, cross-linking with
bipyridine networks achieves high ion selectivity through Donnan
exclusion [84].

2.4. Microstructures of RFB membranes

Membranes in RFBs can be categorized into dense and porous ones.
The core operational difference between these two lies intrinsically in
their microstructures and the consequent primary mechanisms govern-
ing ion transport. Dense membranes, typically composed of homoge-
neous, non-porous polymers, such as Nafion and specialized
hydrocarbon ionomers, function primarily via the solution-diffusion
mechanism [97]. Ions and solvent molecules dissolve into the polymer
matrix at the membrane—electrolyte interface and diffuse through the
nanoscale hydrophilic channels formed by the hydrated ionic groups
(Fig. 2a). Transport selectivity is achieved predominantly through dif-
ferences in solubility and diffusivity within this dense polymer phase,
coupled with Donnan exclusion effects repelling co-ions of the same
charge as the fixed functional groups [98]. This structure inherently
creates a significant barrier to bulk electrolyte movement and crossover
of active species like vanadium ions, but simultaneously imposes higher
ionic resistance due to the tortuous path and limited mobility within the
polymer [19].

In contrast, porous membranes possess a distinct, open microstruc-
ture defined by a network of interconnected nanopores that extend
throughout the entire membrane thickness [99]. Ion transport across
these membranes occurs primarily via convective flow and electro-
migration within electrolyte-filled pores, rather than by dissolution and
diffusion through the polymer bulk (Fig. 2b). In porous membranes,
selectivity is primarily governed by size-exclusion sieving, with a minor
contribution from electrostatic interactions when pore walls are
charged, unlike in dense membranes where such interactions are
dominant [100]. The pore size distribution is critical: pores must be
sufficiently small to physically block the passage of larger active species
or their complexes while allowing smaller supporting ions, such as H',
Cl~, and SO3™, to pass relatively freely. This pore-mediated transport
pathway generally results in significantly lower area resistance
compared to dense membranes, facilitating higher power density, but
creates a more direct conduit for crossover if pore size control or surface
charge is inadequate.

This fundamental divergence in transport mechanism leads to the
critical performance trade-off central to membrane selection. Dense
membranes excel in minimizing active species crossover due to the
inherent barrier created by the solution-diffusion process within the
dense polymer, crucial for long-term cycling stability and high
Coulombic efficiency. However, this comes at the expense of higher
ionic resistance, lowering voltage efficiency, and achievable power
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Fig. 2. Schematic illustration of three ion transport mechanisms in RFB membranes: Donnan exclusion in charged dense membranes (a), size sieving in porous
membranes (b), and the synergy between the two in charged porous membranes (c).

density. Porous membranes offer the advantage of low ionic resistance
and high conductivity, enabling higher power operation, but face a
greater challenge in achieving sufficient selectivity. Preventing cross-
over requires precise engineering of the pore structure (size, tortuosity,
and surface charge density) and often relies on electrokinetic effects or
the presence of a supporting electrolyte. Impurities and active species
can also be more detrimental to porous membrane performance by
blocking pores. Hybrid approaches, such as introducing charged func-
tional groups onto porous substrates, aim to combine the low resistance
of porous structures with enhanced selectivity approaching that of dense
membranes (Fig. 2¢) [101-103]. We will have an in-depth discussion on
advanced membrane design with different microstructures for next-
generation high-performance RFBs in the following section.

3. Advanced membrane design for high-performance RFBs

In this chapter, we present key advancements of functional mem-
brane design for high-performance RFBs, categorized by their micro-
structural configurations. We first summarize representative examples
in dense membranes, including supramolecular-patched Nafion hybrids,
nanostructured SPEEK composites, bilayer architectures, and pseudo-
nanophase separated PBI systems, which leverage Donnan exclusion
and confined transport mechanisms to enhance selectivity and conduc-
tivity. Next, we discuss uncharged porous membranes fabricated via
methods such as non-solvent induced phase separation (NIPS) and pore-
filling techniques, highlighting their reliance on size exclusion for ion
selectivity and low resistance. Finally, we examine charged microporous
membranes, including functionalized polymers of intrinsic micropo-
rosity, hypercrosslinked ion-exchange membranes, and covalent organic
framework (COF) composites, which combine tailored pore chemistry
and fixed charges to achieve superior ion selectivity and conductivity.
These innovations collectively address the conductivity-selectivity—st-
ability trade-offs critical for next-generation RFBs.

3.1. Dense membranes for RFBs

Dense membranes, exemplified by commercial Nafion films, function
as critical separators in RFBs, enabling selective ion transport while
preventing cross-mixing of redox-active species. Unlike porous mem-
branes relying on size exclusion, dense membranes achieve ion selec-
tivity primarily via electrostatic Donnan exclusion and ion-solvation
mechanisms. While previous reviews have systematically examined
dense membrane design strategies [10,11], this work does not attempt a
comprehensive overview. Instead, we critically assess the most recent
representative advances addressing key challenges in dense membranes.

To address the conductivity-selectivity tradeoff, hybridization rep-
resents an effective approach in RFB membrane design. As a typical
example, Li’s group proposed to address the inherent vanadium
permeation issue in Nafion membranes by the supramolecular patching
strategy [104]. This approach introduces fluorinated block copolymers
(FBCs) and polyoxometalates (POMs) as synergistic additives to pre-
cisely modify Nafion's ionic nanophase via cooperative noncovalent
interactions (Fig. 3a). Unlike conventional hybridization methods that
disrupt ionic pathways and sacrifice conductivity, this strategy con-
structs a contracted (~1 nm) yet continuous ionic network. The modi-
fied structure incorporates abundant proton-hopping sites within the
shrunk nanodomains while efficiently screening vanadium ions.
Consequently, the hybrid membrane exhibits simultaneously enhanced
proton conductivity and selectivity.

The same group also developed nanostructured SPEEK hybrid
membranes with enhanced ion selectivity for VRFBs [105]. POM-
functionalized poly(styrene)-b-poly(vinylpyrrolidone) (PSP) block co-
polymers are introduced as additives to construct ellipsoidal nano-
assemblies (~50 nm) within the SPEEK matrix. These nanostructures are
formed by amphiphilic block copolymers, with hydrophobic PS cores
imparting vanadium shielding and hydrophilic PVP/POM shells
providing abundant proton-hopping sites for efficient proton transport
(Fig. 3b). The co-assembly process, driven by multiple noncovalent in-
teractions, integrates proton-conductive nanobarriers without disrupt-
ing membrane continuity. Consequently, optimized membranes exhibit
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doubled proton conductivity and reduced vanadium permeability,
yielding an eightfold improvement in proton selectivity. Similarly,
Wang et al. constructed an advanced composite membrane by incor-
porating PTFE nanoparticles into an SPEEK matrix using a polydop-
amine (PDA) bridging layer. The optimized SPEEK/PTFE-0.5 %
membrane demonstrated exceptional ion selectivity and significantly
improved VRFB performance [106].

Subsequently, various nanophases have been introduced to polymer
matrices. Suresh's group fabricated a novel hybrid proton exchange
membrane by incorporating hydroxylated boron nitride (OH-BN) into
an SPEEK matrix. The OH-BN/SPEEK composite membrane demon-
strated significantly enhanced thermal, chemical, and mechanical sta-
bility compared to pristine SPEEK. Crucially, it exhibited superior ion
selectivity due to reduced vanadium ion permeability while maintaining
adequate proton conductivity. Consequently, VRFBs employing this

hybrid membrane achieved improved Coulombic efficiency and
extended self-discharge time [57]. Sun's group developed a Nafion-
based hybrid membrane incorporating superhydrophilic TiO5 nano-
tubes, which enhances ion selectivity by obstructing and elongating
diffusion pathways, enabling a VRFB to maintain 55.7 % capacity after
1400 cycles [107]. Wang et al. fabricated a hybrid membrane by
incorporating sulfonated COFs into a PBI matrix. The functionalized
COFs create efficient proton-selective nanochannels, significantly
enhancing conductivity while effectively blocking vanadium ion cross-
over [108].

As an alternative to composite formation, thin films are deposited
onto commercial ion-exchange membranes. This approach enhances
VRFB performance while maintaining the original battery configuration
and operating conditions, utilizing existing commercial membrane
sheets. Henkensmeier's group demonstrated that strategically designed
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sulfonated polystyrene/PBI bilayer membranes significantly enhance
VRFB performance and durability [109]. The optimized PSSP (1-25-25-
1) architecture, featuring two stacked bilayers with ultrathin PBI outer
layers (1 pm) and conductive sulfonated polystyrene (S42) inner layers
(25 pm each), achieves vanadium permeability of 6.85 x 10 “m?s7,
surpassing commercial benchmarks. The enhanced performance is
attributed to the synergistic effect of size exclusion and electrostatic
repulsion provided by the PBI barriers (Fig. 4a). Critically, the mem-
brane's minimal material cost ($1.84 m~2) positions it as an economi-
cally viable alternative to perfluorinated membranes (price of Nafion
212 is in the range of $ 225 m~2). This configuration also maintains a
high energy efficiency of 88.5 % while exhibiting substantially reduced
area-specific resistance (144.8 mQ cm?) in VO?*-containing electrolyte
compared to Nafion 212 (439.2 mQ cmz). Performance decay observed
during extended cycling stems primarily from vanadium crossover and
electrolyte imbalance, which was reversible through electrolyte reba-
lancing, confirming the membrane's intrinsic stability (Fig. 4b). Excep-
tional operational stability was demonstrated over 3500 cycles (1660 h)

Applied Energy 406 (2026) 127316

at 100 mA cm ™2 (Fig. 4c). This bilayer design effectively decouples
proton conduction (handled by S42) from vanadium blocking (enabled
by PBI), offering a scalable strategy for durable, high-efficiency VRFBs.

In another research, Pahlevaninezhad et al. developed electro-
chemically exfoliated graphene (EEG)-coated Nafion membranes with
significantly enhanced performance in VRFBs (Fig. 4d) [25]. As illus-
trated in Fig. 4e and f, the voltage efficiency (VE) and energy efficiency
(EE) of batteries equipped with EEG-coated Nafion 117 and Nafion 115
consistently surpassed those using uncoated membranes throughout
cycling. The EEG coating notably improved VE by approximately 10 %
for Nafion 117 and 5 % for Nafion 115 at 80 mA cm’z, attributed to
reduced electrochemical overpotential despite a marginal increase in
area-specific resistance. Consequently, EE increased by up to 13 %
relative to bare Nafion membranes. This improvement persisted with
minimal degradation after 100 cycles, confirming the coating's electro-
chemical stability.

Well-defined hydrophilic/hydrophobic nanophase separation has
also been extensively employed in RFBs. Conventional approaches
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Copyright 2023, American Chemical Society.
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relying on covalently grafted side chains to induce this morphology,
however, present synthesis challenges and may compromise membrane
stability. Recently, Xiong et al. established a supramolecular-enabled
pseudo-nanophase separation strategy for constructing efficient ion-
transport highways in polymeric membranes [110]. As illustrated in
Fig. 5a, hydrophilic “side chains” are non-covalently grafted onto PBI
backbones through multivalent hydrogen-bonding interactions, cir-
cumventing covalent modifications that compromise chemical stability.
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This approach spontaneously induces microphase separation during
membrane formation, generating interconnected hydrophilic nano-
channels (3-14 nm). Following electrolyte infusion, these channels
enable rapid proton transport via a bulk-like conduction mechanism
(Fig. 5b), contrasting sharply with the restricted hopping mechanism
observed in unmodified PBI membranes. These characteristics translate
to superior VRFB performance. Membranes exhibit near-unity
Coulombic efficiency (99.5-100 %) across current densities of 40-300
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mA cm 2 due to the effective Donnan exclusion. Critically, the VRFB
assembled with optimized membranes (PBI-3) demonstrates remarkable
cycling stability over 450 cycles at 240 mA cm 2 (Fig. 5¢).

Subsequently, the same group grafted three topological variants, i.e.,
linear (TETA), branched (TAA), and cyclic (cyclen) amines, non-
covalently onto PBI backbones via comparable hydrogen-bonding
strengths (Fig. 5d), yet induced distinct microstructural morphologies
[111]. As shown in Fig. 5Se, linear TETA's strong intermolecular in-
teractions promote tight packing, yielding small (~5 nm) but isolated
hydrophilic domains. Conversely, cyclic cyclen's weak self-interaction
enables loose molecular stacking, forming larger (~12 nm) inter-
connected channels, while branched TAA exhibits intermediate
behavior. These topological effects directly govern ion transport: cyclic-
topology membranes achieve a low area resistance of 0.10 Q cm?
(Fig. 5f), surpassing Nafion 212 by 33 % due to optimized proton
highways. Moreover, cyclen-mediated membranes deliver a high energy
efficiency of 80.7 % even at 220 mA cm ™2 (Fig. 5g).

The widespread commercialization of RFBs is limited by high costs
and performance issues, notably the poor chemical stability and insuf-
ficient ion selectivity of current commercial Nafion membranes, as well
as their fluorinated composition. This challenge is further intensified by
imminent regulatory restrictions, including forthcoming EU pro-
hibitions on PFAS by the early 2030s [112]. Non-fluorinated membranes
that include highly acidic sulfonic acid groups within hydrocarbon
matrices serve as effective alternatives to PFAS-based systems. As a
typical example, Henkensmeier's group fabricated dense, fluorine-free
sulfonated para-polybenzimidazole (MS-PBI) membranes with excep-
tional performances in VRFBs (Fig. 6a) [87]. As illustrated in Fig. 6b,
Coulombic efficiency (CE) exhibits an inverse relationship with tem-
perature, decreasing from 99.7 % at 25 °C to 98.7 % at 35 °C (80 mA
em ™2, MS-PBI #1 membrane) due to enhanced vanadium ion mobility at
elevated temperatures. Conversely, energy efficiency (EE) benefits
significantly from higher temperatures under high-current-density

(a)
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operation (Fig. 6¢). For example, at 300 mA em ™2, EE reaches 80.3 %
at 35 °C, compared to only 72.3 % at 25 °C. This improvement is
attributable to reduced ohmic losses from improved proton conductiv-
ity. At lower current densities (80 mA cm’z), EE remains consistently
high, exceeding 92 % across different temperatures, which indicates
minimal sensitivity to temperature changes. Long-term cycling tests
(Fig. 6d) further confirm the durability of the system, with EE retention
exceeding 98 % after 100 cycles at 80 mA cm ™2 and minimal capacity
fade (27 % loss at 25 °C). Khataee's group fabricated a series of poly
(terphenylene) membranes incorporating zwitterionic (sulfoalkylated
piperidinium) and cationic (piperidinium) moieties at controlled ratios
(40-60 %). The as-assembled VRFBs with the zwitterionic membranes
exhibited comparable performance to Nafion 212 in key metrics,
including ionic conductivity, capacity retention, and chemical stability
[113].

3.2. Porous membranes for RFBs

Porous membranes represent a distinct class of separators for RFBs,
leveraging size-sieving mechanisms rather than electrostatic in-
teractions to achieve ion selectivity [20]. Unlike dense ion-exchange
membranes, porous membranes physically block larger hydrated vana-
dium ions while permitting smaller charge-balancing ions to traverse
their nanopores. This section reviews recent advances in porous mem-
brane design for VRFBs, focusing on different approaches for con-
structing the porous structure.

As a typical example, NIPS was introduced as a versatile and scalable
fabrication method for designing porous carbon electrodes tailored for
RFBs [114]. As demonstrated in Fig. 7a, the process involves casting a
polymer solution containing polyacrylonitrile (PAN) and poly(vinyl-
pyrrolidone) (PVP), followed by immersion in a non-solvent bath to
induce phase separation. Subsequent drying, thermal stabilization, and
carbonization yield mechanically robust, electrically conductive
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Fig. 6. Non-fluorinated membranes incorporating highly acidic sulfonic acid groups within hydrocarbon matrices for RFBs. (a) Molecular design and fabrication of
MS-PBI membranes. VRFB performance of CE (b) and EE (c) with NR212, MS-PBI #1, and MS-PBI #2 membranes, respectively, at 25/35 °C and current densities of
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electrodes with hierarchical porosity. Fig. 7b highlights the tunability of
the microstructure through easily adjustable parameters, such as poly-
mer composition, which enables the creation of multimodal pore net-
works, including gradient and isotropic structures. Electrochemical
performance was evaluated using a single-electrolyte flow cell with an
iron chloride redox couple (Fig. 7c). Polarization curves (Fig. 7d)
demonstrated that NIPS-derived electrodes exhibit reduced over-
potentials and improved current densities compared to conventional
carbon electrodes, attributed to their hierarchical pore structure, which
enhances mass transport and surface accessibility.

In another research, Verma's group fabricated a low-cost pore-filled
composite membrane by impregnating a porous PVDF substrate with
Nafion solution [115]. As illustrated in Fig. 7e, the synthesis involves
pretreatment of the PVDF membrane, followed by drop-casting of
Nafion solution, solvent evaporation, and thermal drying, resulting in
uniform filler distribution within the pores. The incorporated Nafion
forms a tortuous pathway that significantly hinders vanadium ion
crossover (Fig. 7f). Although proton conductivity is somewhat
compromised, the composite membrane exhibits notable economic ad-
vantages and reduced self-discharge, demonstrating strong potential as a
cost-effective and durable alternative to conventional Nafion mem-
branes in VRFBs.

11

Membranes with inherent micro- or nanopores circumvent the need
for artificial pore generation, thereby simplifying the fabrication process
[117]. Furthermore, such intrinsic pores often exhibit uniform size and
are tunable at the nanometric or sub-nanometric scale, with a narrow
distribution of pore sizes. This inherent regularity alleviates the diffi-
culties associated with controlling membrane morphology. For instance,
Li’s group developed a thin-film composite membrane (TFCM) with an
ultrathin polyamide selective layer, designed to address the long-
standing trade-off between ion conductivity and selectivity [116]. As
shown in Fig. 8a, the membrane was fabricated via interfacial poly-
merization of trimesoyl chloride (TMC) and m-phenylenediamine
(MPD), resulting in a continuous and defect-free selective layer that
exhibits a characteristic “ridge-and-valley” morphology (Fig. 8b). This
layer has a thickness of approximately 40 nm and is supported by a
porous substrate (Fig. 8c). Ab initio molecular dynamics (AIMD) simu-
lations revealed that the polyamide layer contains sub-1 nm pores
(Fig. 8d), which facilitate proton transport through both Vehicle
(Fig. 8e) and Grotthuss (Fig. 8f) mechanisms. Additionally, these pores
effectively exclude larger hydrated vanadium ions through size exclu-
sion. This unique structure enables exceptionally high proton conduc-
tivity and selectivity. Battery performance tests demonstrated that a VFB
equipped with this membrane achieved an energy efficiency exceeding



J. Deng et al.

Applied Energy 406 (2026) 127316

I ]
I 1
I 1
I 1
I I
I 1
I 1
I 1
I 1
I I
I 1
I 1
I - 1
: S& <% ‘ (MPD) (TMC) m n :
d
I 1
I . 1
I I
»
I 1
. (€) o8, (f) on¥r !
1 B ‘w 1
I 3 Or |
I I
I 1
I 1
I 1
I 1
I 1
I 1
I ]
I I
I 1
I 1
I 1
I 1
I 1
I 1
I I
I 1
1 80 1
I . 1
—_ — o
1 g E & - CE & :
1 > > B o VE & L 1
b5 5 “EE s ¥ '
1 g k5t 2 I
] = L 40 = 1
=

. W i W g5 ) —m— CE of this work :
] 0 < B 5 N —A— EE of this work 1
i 65 [ IP20.15CE -0 - NI 115 CE ¥ N:211 CE 20 - 260 mA cm -0 - CE of PBI membrane ]
1 F—e— IP2-0.15 VE -0 - Nf 115 VE & Nf211VE s & - 1
I —A— IP2-0.15EE -4 - Nf115EE < Nf211 EE A~ EE of PBI mambrane 1
- 60 Lt 2 ) h ; / i " . i ; g i i i i ) : :
: 40 80 120 160 200 240 280 320 0 200 400 600 800 1000 —-10 0 10 20 30 40 50 :
] Current density (mA cm™) Cycle number Temperature (°C) ]
1
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H(white). (g) Efficiencies of [P2-0.15 vs. Nafion 115 membranes at different current densities. (h) Cycling performance of the IP2-0.15 system at a current density of
260 mA cm 2. (i) Efficiencies of IP2-0.15 vs. prior high-performance porous PBI membrane. Reproduced with permission from Ref. [116]. Copyright 2020, Springer
Nature. (j) 3D visualization of an amorphous PIM-EA-TB membrane from the authors' earlier study, along with a schematic illustration of its water-mediated hy-
drophilic ion channels. (k) Significant net volume change in an RFB employing a thin selective membrane. (1) Controlled net volume change in an RFB utilizing a
thicker selective membrane. Reproduced with permission from Ref. [50]. Copyright 2023, Wiley-VCH. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

80 % even at a current density of 260 mA cm™2 (Fig. 8g), along with
outstanding cycling stability and minimal capacity decay over 1000
cycles (Fig. 8h). The membrane also exhibited robust performance
across a wide temperature range, underscoring its potential for high-
power-density, durable flow battery applications (Fig. 8i).

Similarly, Tan et al. proposed to regulate mass transport through the
use of TFCM based on Troger's base polymer of intrinsic microporosity
(PIM-EA-TB) [50]. The membrane features well-defined hydrophilic ion
channels that facilitate selective ion conduction (Fig. 8j). It is note-
worthy that severe net volumetric electrolyte transfer occurs in RFBs
equipped with thinner selective layers, which leads to significant water
migration and crossover of redox species (Fig. 8k). In contrast,
employing a thicker selective layer, as depicted in Fig. 8l, effectively
mitigates these transport issues, resulting in managed electrolyte
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transfer and enhanced operational stability. By optimizing the thickness
of the PIM-EA-TB selective layer, the crossover of redox-active species is
reduced by 1-2 orders of magnitude, and water migration is signifi-
cantly suppressed, thereby prolonging the cycling life of RFBs with
minimal capacity fade.

In addition to polymers of intrinsic microporosity, research interest
has expanded to other intrinsically porous materials, such as COFs and
metal-organic frameworks (MOFs), for membrane applications, owing
to their tunable pore channels, ion selectivity, and structural design
flexibility [118]. Recently, acid-stable zirconium-based MOFs, namely
MOF-801 and MOF-808, were incorporated as functional fillers into an
SPEEK matrix to fabricate advanced RFB membranes [119]. The distinct
pore architectures of these MOFs, i.e., triangular windows (~3.5 A)in
MOF-801 and larger hexagonal apertures (~10.1 A) in MOF-808, enable
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tailored ion-sieving properties and proton-conduction pathways
(Fig. 9a). Molecular MOF-801's sieving effect effectively suppresses va-
nadium ion crossover. At the same time, the highly interconnected and
protophilic channels of MOF-808 facilitate rapid proton transport.
Consequently, electrochemical performance evaluations revealed that
the composite membrane with MOF-801 (S/801-3) exhibited superior
Coulombic efficiency, reaching 98.5-99.2 % across current densities of
40-120 mA cm 2 (Fig. 9b). In contrast, the MOF-808-incorporated
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membrane (S/808-3) demonstrated significantly enhanced voltage ef-
ficiency values of 93.7-84.1 % (Fig. 9c). The critical role of MOF pore
geometry in balancing ion selectivity and conductivity is thus
underscored.

Subsequently, Huang's group engineered hollow MOFs with graded
lattice defects to construct high-performance ion-conducting mem-
branes [120]. They selectively etched the internal defective core of MIL-
101 under acidic conditions to produce hollow HMIL-101. This new
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structure features an ultralow-resistance internal reservoir channel,
which is surrounded by a lattice-perfect ion-sieving shell (Fig. 9d).
Synchrotron X-ray absorption fine structure (XAFS) spectroscopy
quantitatively revealed a gradient in Cr—O coordination numbers from
the defective core (~5.1) to the nearly perfect shell (~5.9), confirming
the presence of structurally distinct regions (Fig. 9e). The resulting
cavity significantly enhanced proton transport, with proton conductivity
increasing by nearly an order of magnitude (2.9 x 10> vs. 4.0 x 107*S
em 1) due to near-frictionless diffusion within the hydrated reservoir, as
supported by in situ thermogravimetric-infrared analysis accompanied
by mass spectroscopy (TG-IR-MS) (Fig. 9f). When incorporated into a
SPEEK matrix, the HMIL-101-based membrane demonstrated excep-
tional performance in AORFBs, achieving a Coulombic efficiency
exceeding 97 % at 60 mA cm 2 (Fig. 9g) and a voltage efficiency of 57.4
% at 120 mA cm ™2, 7 % higher than that of a commercial Nafion-212
membrane (Fig. 9h).

3.3. Charged microporous membranes for RFBs

By strategically incorporating charged functional groups into porous
substrates, charged microporous membranes harness the inherently low
ionic resistance of porous architectures while attaining selectivity levels
comparable to those of dense membranes. Through precise control over
pore chemistry and the introduction of fixed charged sites, these
modified membranes achieve a synergistic enhancement in both ion
selectivity and conductivity, effectively overcoming the traditional
trade-off between these critical performance parameters [102,121,122].

For instance, Song's group developed a series of ion-sieving sulfo-
nated polymer membranes based on a microporous spirobifluorene-
derived polymer (PIM-SBF) for aqueous organic RFBs [123]. The
membranes were functionalized with sulfonate groups via a controlled
reaction using trimethylsilyl chlorosulfonate. This process allowed for
precise tuning of the ion exchange capacity while preserving the
microporous structure. As illustrated in Fig. 10a, b, the rigid and con-
torted polymer backbone facilitates the formation of subnanometer
channels that promote selective ion transport. The relationship between
ionic conductivity and ferrocyanide permeability is illustrated in the
upper-bound plot (Fig. 10c). This plot demonstrates that the optimized
membrane (sPIM-SBF-1.40) surpasses commercial benchmarks such as
Nafion 115, offering a favorable balance between high ionic conduction
and effective rejection of redox-active species. Electrochemical tests
using electrolytes at pH 9 revealed that cells equipped with sPIM-SBF
membranes exhibit enhanced energy efficiency across various current
densities (Fig. 10d) and significantly improved cycling stability, with a
capacity decay rate as low as 0.0335 % per day over 2100 cycles, out-
performing Nafion-based cells by two orders of magnitude (Fig. 10e).

More recently, the same group fabricated ion-selective membranes
for RFBs through the physical blending of carboxylate-functionalized
(cPIM-1) and amidoxime-functionalized (AO-PIM-1) polymers of
intrinsic microporosity [124]. As illustrated in Fig. 10f, the two func-
tional polymers form a microscopically homogeneous and inter-
penetrating network facilitated by strong cohesive interactions,
including hydrogen bonding and salt-bridge formation between car-
boxylic acid and amidoxime groups. This stands in sharp contrast to the
macroscopic phase separation observed in control blends of cPIM-1 with
unfunctionalized PIM-1. The incorporation of ionizable groups within
the sub-nanometer pores enables tunable ion-transport properties, while
the rigid polymer backbones restrict excessive swelling and provide
molecular-sieving functionality. The resulting blend membranes achieve
an optimal balance between high ionic conductivity and exceptional
selectivity against crossover of redox-active species, significantly out-
performing commercial Nafion membranes.
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Recently, Wong et al. incorporated three-dimensional triptycene
units into the polymer backbone to overcome the performance limita-
tions of conventional SPEEK membranes [125]. The contorted tripty-
cene structures disrupt chain packing and generate intrinsic
microporosity, forming highly interconnected, hourglass-shaped sub-
nanometer channels that facilitate efficient dual ion transport (Fig. 11a-
d). These engineered membranes exhibit significantly enhanced ionic
conductivity, particularly for hydroxide ions in alkaline media, due to
continuous hydrogen-bonding networks enabling Grotthuss-type con-
duction, while maintaining exceptional molecular sieving selectivity
against redox-active species. When integrated into neutral pH aqueous
organic RFBs, the optimized sPEEK-Trip-1.55 membrane substantially
improved energy efficiency, achieving over 80 % at 100 mA cm ™2
(Fig. 11e), and supported stable long-term cycling with minimal ca-
pacity decay (Fig. 11f). The unique microporous architecture effectively
decouples the traditional trade-off between conductivity and selectivity,
positioning these membranes as promising enablers for high-power,
durable flow battery systems.

Xu's group developed a facile hypercrosslinking strategy to transform
conventional quaternized polyphenylene oxide (QPPO) membranes into
microporous ion exchange membranes (HC-QPPO) for application in
pH-neutral aqueous organic RFBs [101]. As illustrated in Fig. 11g, the
hypercrosslinking process involves a simple Friedel-Crafts alkylation
reaction, which introduces a rigid microporous framework while
retaining the original charged functionalities. The resulting HC-QPPO
membrane exhibits significantly enhanced performance: ionic conduc-
tivity more than doubles (Fig. 11h), and selectivity is improved by over
an order of magnitude (Fig. 11i), effectively overcoming the typical
conductivity-selectivity trade-off. When deployed in a flow battery, the
HC-QPPO membrane demonstrates markedly reduced area-specific
resistance and exceptional cycling stability, with a capacity fade rate
as low as 0.0017 % per cycle (Fig. 11j). This approach combines the
commercial availability of traditional membranes with the performance
advantages of microporous polymers, thus offering a promising pathway
toward high-performance, cost-efficient energy storage devices.

Functionalized COF that have a high density of functional groups
offer promising potential for exceptional proton conductivity and
remarkable stability in high-performance RFBs. However, creating
functionalized COF membranes that achieve both high ion selectivity
with robust durability remains a significant challenge. Recently, Jiang's
group successfully developed a hybrid proton exchange membrane by
incorporating sulfonated COF into an SPEEK matrix [126]. As illustrated
in Fig. 12a, the well-defined nanochannels and high density of -SOsH
groups in SCOF facilitate efficient proton transport via both Grotthuss
and vehicle mechanisms. The hybrid membrane exhibits significantly
reduced vanadium ion permeability (Fig. 12b) and enhanced proton
conductivity, culminating in superior ion selectivity (Fig. 12c). When
evaluated in a VRFB single cell, the SCOF/SPEEK membrane achieves
higher Coulombic efficiency and energy efficiency across various cur-
rent densities compared to Nafion212 and pristine SPEEK membranes
(Fig. 12d, e). Moreover, it demonstrates outstanding capacity retention
after 200 cycles (Fig. 12f).

In another research, Wang et al. incorporated an ionic covalent
organic polymer (iCOP) into a Nafion matrix to fabricate a composite
proton exchange membrane for iron-chromium RFBs [127]. As depicted
in Fig. 12g, the iCOP was synthesized via interfacial polymerization and
integrated into the membrane to provide abundant sulfonic acid groups
and protonated amine functionalities. These features facilitate the for-
mation of efficient proton transport pathways through a hydrogen-bond
network while simultaneously suppressing the crossover of Fe>* and
Cr®* ions via the Donnan exclusion effect. The iCOP-8 membrane (with
0.8 wt% iCOP) exhibited outstanding battery performance, achieving
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high CE and EE across a range of current densities (Fig. 12h, i). Specif-
ically, it reached a CE of 97.66 % and an EE of 87.11 % at 100 mA cm ™2,

significantly outperforming the recast Nafion membrane.

To facilitate a direct comparison of the properties and performances

of the state-of-the-art membranes discussed in this section, summary
tables are provided below. Table 3 summarizes key membrane proper-

ties including thickness, swelling behavior, ion transport characteristics,
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and selectivity metrics, while Table 4 provides performance data under
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actual flow battery operating conditions. enabling grid-scale energy storage, yet it remains constrained by the
These tables reveal that recent advancements in membrane design, fundamental conductivity-selectivity-stability trilemma. Traditional
particularly those incorporating microporous architectures and tailored PFSA membranes offer high proton conductivity and durability but
ion channels, have successfully pushed the boundaries of the traditional suffer from high cost, significant vanadium crossover, and environ-
conductivity-selectivity trade-off. mental concerns. Hydrocarbon-based alternatives, while more afford-
able, often lack the chemical stability required for long-term operation

4. Summary and perspectives in aggressive electrolytes. Here, this review first establishes the princi-
ples governing membrane performances, emphasizing ion transport

The development of advanced membranes for RFBs is critical to mechanisms such as solution-diffusion in dense membranes and pore-
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Table 3
Summary of membrane perporties.
Membrane Thickness(pm) Swelling radio(%) Area resistance Test temperature(°C) Vanadium permeability Ref.
or ion conductivity
SPI-DH-60 60 15.39 101 mS cm™ ! 80 1.38 x 1077 cm? min ! [128]
1.5 %TPB-PBAP 55 14 74.5mS cm™ ! 180 4.6 x 10~% cm® min~? [129]
MS-PBI #1 23 16 65 mS cm ™! 25 7.85 x 1078 cm? min ! [871
$52 52 34.6 39.2mS cm ™! Room temperature 6.85 x 10 * cm?s7! [109]
2
s-OPBI 102 20 ~35 29 m@ em” - 3.09 x 10~7 cm? min~! [130]
70 mS cm
bipCTF/SP-100 69 ~4 0.3 Q cm? Room temperature 19.05 x 10™° em? 57! [131]
S/Ui0-66-PS-2 59 ~17 98.3 mS cm ™! 30 51 x 1077 em?s7! [132]
1.64 x 10 2Scem™! 72l o
SPI-B-50 40 10 0.24 O cm? - 0.71 x 107" cm” min [133]
b-DPM-N3 20-25 2.9 0.42 Q cm? 30 1.06 x 10712 cm? 571 [134]
Table 4
Summary of membrane performances.
Membrane Electrolyte CE(%) VE(%) EE(%) Cycle number Current density Ref.
(mA cm’z)
C-abSPI-10 3MSA 95-98.1 90.6-73.6 83.9 1500 120 [135]
SPI-DH-60 3MSA 96.93 83.92 80.39 400 160 [128]
1.5 %TPB-PBAP 3MSA 98.9 87.3 83.3 300 100 [129]
MS-PBI #1 3MSA 99.6 ~92 92.2 - 80 [871
PSSP(1-25-25-1) 3MSA 99.6 ~83 88.5 3500 100 [109]
s-OPBI 102 3MSA 98.6 + 0.2 82.0+1.1 91.8 200 80 [130]
HF-SCOF nano-pipeline ICM 3MSA 99.5 82.3 81.9 1000 200 [136]
b-DPM-N3 0.5 M FcNCl/BTMAP-Vi 99 - 82-85 250 60 [134]

mediated flow in porous architectures. Key performance metrics,
including conductivity, selectivity, and stability, are then deeply inter-
linked with material composition, water uptake, functional group den-
sity, and microstructural design.

Recent advancements in membrane design demonstrate innovative
strategies across three primary architectures: dense, porous, and
charged microporous membranes. Dense membranes, such as modified
Nafion and sulfonated polyaromatics, leverage Donnan exclusion and
hybrid approaches like supramolecular patching and bilayer designs to
enhance selectivity without sacrificing conductivity. Porous mem-
branes, fabricated via phase inversion or templating, utilize precise
nanopore engineering for size-based ion sieving, significantly reducing
area resistance while maintaining low crossover. Emerging charged
microporous membranes combine rigid sub-nanometer channels with
tailored surface chemistry to achieve simultaneous high conductivity
and exceptional ion selectivity. These developments illustrate a shift
toward multi-mechanistic and hierarchically structured membranes that
decouple ion transport pathways from blocking mechanisms, offering
promising routes to high-performance, durable, and sustainable RFBs.

Despite these advances, critical challenges persist. Long-term sta-
bility under harsh RFB conditions, such as extreme pH and oxidizing
agents, remains elusive for non-fluorinated membranes. Scalable fabri-
cation of membranes with sub-nanometer precision, which is essential
for balancing high conductivity and selectivity, requires innovative
processing techniques. Moreover, performance validation often relies on
limited cycling data of <1000 cycles, insufficient for commercial RFBs
demanding decade-long operation. And current assessment methods
vary widely in terms of test cell configuration, electrolyte composition,
current density, and cycling protocols, making it difficult to directly
compare membrane performance across studies. The interdependence of
membrane properties with redox couples and electrolytes further com-
plicates universal design rules, necessitating system-specific
optimization.

Based on the above summarized challenges, future efforts should
prioritize four areas:

1) Advanced modeling and characterization: To rationally design next-

generation membranes that overcome the conductivity—selectivity—st-
ability trilemma, advanced computational and experimental tools are
essential. Multiscale simulations spanning from molecular dynamics
that elucidate atomistic interactions and ion transport mechanisms in
sub-nanometer channels, to machine learning models that optimize
microstructure and composition, must guide the design of membranes
with tailored nanoarchitectures. Concurrently, operando characteriza-
tion techniques, such as neutron scattering and X-ray imaging, should be
employed to probe ion and water transport dynamics, swelling behavior,
and degradation mechanisms in real time under realistic operating
conditions. The integration of these approaches will provide funda-
mental insights into structure-property-performance relationships,
accelerate the development of durable and high-performance
membranes.

2) Bio-inspired and multifunctional materials: Next-generation mem-
branes should leverage bio-inspired designs and multifunctional mate-
rial strategies. This includes constructing hierarchical structures, such as
artificial ion channels that mimic biological selectivity and efficiency, as
well as gradient porosity for optimized ion transport and pressure dis-
tribution. Furthermore, integrating self-healing chemistries enabled by
dynamic covalent bonds or supramolecular interactions could allow
membranes to autonomously repair damage from mechanical stress or
chemical degradation, thereby dynamically adapting to operational
stresses, extending service life, and maintaining performance stability
under fluctuating battery conditions.

3) Standardized testing: It's crucial to establish standardized testing
protocols, particularly for evaluating long-term stability under harsh
operational conditions. Developing unified benchmarks that simulate
real-world stressors, such as extreme pH, highly oxidizing species, and
prolonged operation, can accurately predict membrane durability over
decades of service. Standardized validation will not only enable reliable
screening of new materials but also accelerate the translation of labo-
ratory innovations into commercially viable and durable membranes.
This issue is compounded when comparing membranes tested in
different RFB systems (e.g., VRFB vs. aqueous organic RFB).

4) Integrated system design: To bridge the lab-to-industry gap,
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membrane development must extend beyond standalone material
properties to holistic co-optimization with next-generation electrolytes,
such as organic molecules and solid-phase suspensions under realistic
flow conditions. This involves assessing long-term compatibility, cross-
over kinetics, and performance stability in operational environments to
ensure scalability and system-level reliability for practical RFB appli-
cations. Furthermore, comprehensive techno-economic analysis and life
cycle assessment (LCA) are becoming indispensable for justifying new
membrane technologies. Evaluating the cost-per-cycle and overall
environmental footprint, including resource use and end-of-life consid-
erations, will provide critical metrics to validate the economic viability
and sustainability of advanced membranes for grid-scale storage
deployment.
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